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A B S T R A C T
Additive manufacturing (AM) technologies have undergone significant advancements through the in-
tegration of cooperative robotics additive manufacturing (C-RAAM) platforms. By deploying AM
processes on the end effectors of multiple robotic arms, not only are traditional constraints such as
limited build volumes circumvented, but systems also achieve accelerated fabrication speeds, coop-
erative sensing capabilities, and in-situ multi-material deposition. Despite advancements, challenges
remain, particularly regarding defect generation including voids, cracks, and residual stress. Various
factors contribute to these issues, including toolpath planning (i.e., slicing strategies), part decompo-
sition for cooperative printing, and motion planning (i.e., path and trajectory planning). This review
first examines the critical aspects of system control for C-RAAM systems consisting of slicing and
motion planning. The methods for the mitigation of defects through the adjustment of these aspects
and the process parameters of AM methods are then described in the context of how they modify the
AM process: pre-process, inter-layer (i.e., during layer pauses), and mid-layer (i.e., during material
deposition). The application of advanced sensing technologies, including high-resolution cameras,
laser scanners, and thermal imaging, for capturing of micro, meso, and macro-scale defects is ex-
plored. The role of digital twins is analyzed, emphasizing their capability to simulate and predict
manufacturing outcomes, enabling preemptive adjustments to prevent defects. Finally, the outlook
and future opportunities for developing next-generation C-RAAM systems are outlined.

1. Introduction
Additive manufacturing (AM) processes utilize layer-

by-layer material deposition to fabricate parts from feed-
stock as opposed to conventional manufacturing which em-
ploy subtractive or forming methods from stock material
[1]. First developed in the 1980s [2], AM has grown to
seven recognized categories [3], specifically material extru-
sion (ME), material jetting, binder jetting, powder bed fu-
sion, directed energy deposition (DED), sheet lamination,
and photo-polymerization [4]. The processes utilize a wide
range of feedstock materials such as polymers, metals, com-
posites, concrete, and ceramics [5, 6]. AM’s capability to
fabricate complex geometries, reduce material waste and de-
crease production turnaround has driven use in various in-
dustrial areas including aerospace [7], defense [8], construc-
tion [9, 6], and medical [10] and has led to significant market
growth, with expectations to reach over $70 billion globally
by 2030 [4].

The majority of AM processes employ gantry-style plat-
forms to afford the control necessary for part fabrication
while remaining inexpensive [11, 12]. Several AM pro-
cesses including powder bed fusion and VAT photopolymer-
ization require gantry-style platforms as a result of process
characteristics (e.g., material handling) which constrains
system design [13, 14]. While effective, the nature of the "in-
bounds" build volume (i.e. static, exclusive build regions)
of gantries results in a limited maximum part size unsuit-
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able for large-scale part fabrication [15]. In instances where
parts exceed the maximum build volume, they must be de-
composed into segments which greatly reduces mechanical
strength. Furthermore, large-scale gantry systems are pro-
hibitively expensive and have subsequently seen little inte-
gration for large-scale AM.

Recent research has turned to the development of AM
systems that leverage robotic arms to facilitate the motion
of toolheads, commonly referred to as robotic arm additive
manufacturing (RAAM) [16], to provide enhanced capabil-
ities and alleviate drawbacks found in conventional gantry-
style systems [17]. The high degree of freedom (DoF) of
RAAM systems affords both multi-plane and non-planar
slicing methods which can improve mechanical strength and
reduce support material usage [18, 19]. The large build
area and out-of-bounds build volumes of RAAM systems en-
able the fabrication of large-scale parts with both single and
multi-arm configurations that utilize overlapping build vol-
umes [20]. RAAM systems have been explored in a variety
of AM processes including ME [21], DED [22] and stere-
olithography [23]. However, wire-fed DED processes such
as wire arc additive manufacturing (WAAM) suffer from de-
fects such as residual stress, porosity, and void generation
[24]. Powder-fed DED processes such as laser-DED (L-
DED) similarly suffer from porosity and voids in addition to
powder-specific defects including keyholing [25]. ME pro-
cesses such as fused filament fabrication (FFF)/fused depo-
sition modeling (FDM) suffer from defects including inter-
nal porosity, often known as voids, which form in between
deposition tracks within layers [26]. The presence of these
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Figure 1: Relevant research areas of RAAM and recent papers within these topics.

No. Author Description Area

1 Bhatt et al. [17] Describes advantages of RAAM sys-
tems including C-RAAM RAAM

2 Jiang et al. [27] Reviews high DoF gantry and
RAAM/C-RAAM systems RAAM

3 Urhal et al. [28] Reviews examples of RAAM systems RAAM

4 Tang et al. [19] Covers advantages and challenges of
multi-DoF systems RAAM

5 Zahid et al. [29] Covers quality control strategies for
WAAM RAAM systems

Intelligent
RAAM

6 Chen et al. [30] Investigates defects and detection ap-
proaches for WAAM RAAM systems

Intelligent
RAAM

7 Lehmann et al. [31] Discusses state of the art large scale
metal AM processes LSAM

8 Vicente et al. [20] Review of large scale polymer mate-
rial extrusion processes LSAM

9 Alhijaily et al. [11] Discusses multi-robot AM systems C-RAAM

10 Xiong et al. [32] Reviews intelligent monitoring meth-
ods for AM

Smart
AM

11 Khosravani et al. [6] Reviews LSAM, RAM and C-RAM
applications for construction C-RAAM

defects can require the re-manufacturing of RAAM compo-
nents leading to massive waste of time and costs especially
for large-scale parts.

Cooperative robotic arm additive manufacturing (C-
RAAM) platforms consisting of multiple robotic arms en-
able improved fabrication speeds [33], enhanced sensing
capabilities [34], and heterogeneous tooling for improved
mechanical properties [35]. As shown in Figure 1, previ-
ous reviews have discussed the advantages of RAAM sys-
tems [17, 27] and C-RAAM systems [11], as well as im-
provements to metal RAAM systems using machine learning
(ML) [36]. These works do not comprehensively discuss the
challenges of process quality and the relevant methods for
obtaining desirable qualities for both single and multi-arm
RAAM systems. Furthermore, there have been a few dis-
cussions specifically regarding multi-arm RAAM systems
which are pertinent to resolving large-scale fabrication chal-
lenges in AM through the lens of part quality and mechanical
properties.

In this paper, we review the aspects of C-RAAM sys-
tems critical to intelligent and high-quality fabrication of
parts (Figure 2). An overview of the development of RAAM
and its advantages is introduced. System control, or aspects
particular to the RAAM system, is then discussed regarding
three main areas of focus, slicing (i.e. toolpath planning),
motion planning, and digital twin. Process control meth-
ods, particular to the AM process integrated, for the miti-
gation of defects are introduced through three control levels.
Challenges and opportunities within C-RAAM systems as
a reflection of the current literature are described preceding
the conclusion of this work. The areas of investigation have
considerable future impacts on emerging research fields such
as digital twins which enable the harmonious integration of
physical world feedback from sensors with digital represen-
tations. Specifically, this work provides the following con-
tributions:

• C-RAAM configurations are characterized by build
volume into two categories: high-overlap (e.g., ho-
mogeneously tooled large-scale printing) and low-
overlap (e.g., multi-material or cooperative sensing).

• Toolpath planning (i.e., slicing) and motion planning
(i.e., path planning and trajectory planning) methods
are distinguished and discussed in depth in single and
multi-arm systems.

• Defect mitigation techniques applicable to RAAM
systems are discussed, as well as challenges pertinent
to C-RAAM systems. Methods are characterized ac-
cording to how feedback from these sensor signals can
be employed: pre-process, inter-layer, or mid-layer.

The literature review conducted uses specific key-
words to locate papers which utilize robotic systems for
AM fabrication. As this is an emerging field with non-
standardized terminology, a wider spread of terms is em-
ployed to locate works that fall under the definition of
RAAM. The search terms utilized to identify RAAM papers
include "robotic additive manufacturing", "robot|robotic",
and "arm|manipulator", and for multi-arm RAAM sys-
tems this adds "cooperative", "C3DP", "multi-arm", and
"arms|manipulators". Process-specific terms for RAAM in-
clude "DED", "WAAM", "ME", and "FFF|FDM". Sensing
specific terms for AM processes include "sensing", "qual-
ity", "monitoring", "detection", and "defect". Combinations
of these base search terms were used to locate the relevant
papers covered within this review.

2. Robotic Arm Additive Manufacturing
RAAM systems are consisting of an AM process tool-

head integrated into articulated robotic arms with ≥ 4-DoF
(e.g., selective compliance assembly robot arm (SCARA),
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Figure 2: Flowchart of the review paper which system control methods (i.e., slicing and toolpath planning) and process control
methods for defect mitigation across process control levels (pre-process, inter-layer, and mid-layer) and using digital twins.

manipulator with spherical wrist). RAAM systems have
out-of-bounds build volumes that are capable of being over-
lapped with additional systems or moved to a secondary lo-
cation to enlarge the effective build volume and maximum
part volume. In contrast, systems with in-bound build vol-
umes (e.g., gantries, delta robots) can only increase the max-
imum effective build volume through an increase in the size
of the system itself as result of their geometry. Parts are
created through layer-by-layer deposition of material onto
a substrate from an end effector integrated with a specific
AM process (e.g., FFF, FDM, and DED). The framework
by which parts are created is outlined as follows: A part
created using computer aided design (CAD) is converted to
a suitable file format (e.g., STL and OBJ) to then be pro-
cessed by a slicing program. Pre-process operations such as
segmentation or transformation are applied to the part ac-
cording to the slicing method used. High degrees of free-
dom afford advanced path planning strategies such as multi-
axis slicing, whereby additional axes of 2D planar slicing are
defined, and non-planar slicing, where 3D surfaces are uti-
lized to slice parts. The predetermined path of deposition, or
toolpath plan, is then created using the desired slicing pro-
cesses similar to conventional approaches [37] to determine
which points the end effector must move through to create
the desired geometry. However, such high degrees of free-
dom found in RAAM systems require sufficient inverse kine-
matic solutions, or motion plans, to determine what set of
joint configurations should be used to move the end effector
to the desired location and orientation [25, 38]. Solutions
must be located which also avoid collisions and singulari-
ties which is further complicated in systems with multiple
robotic arms. Proper coordination of both the motion of the
robotic arm and end effector control allows for the fabrica-
tion of parts with superior capabilities compared to conven-
tional AM platforms.

Early examples of RAAM systems focused on metal de-
position processes which utilize modified welding processes
and high DoF in robotic arms [39]. AM systems that can
be compactly integrated into an end effector with moderate
loads (<50kg) are most commonly used for RAAM systems

which include ME methods such as FFF or FDM, and DED
methods such as WAAM [17]. One such early example is
an investigation in 2011 by Bonaccorso et al. [40] with a
modified welding process to enable layer-by-layer metal de-
position implemented on a 6-DoF Kuka robot. Around this
time RAAM studies utilizing FFF/FDM processes were also
investigated including a system proposed by Choi et al. [41]
in 2010 consisting of multiple SCARA robot arms on a mod-
ular plate.

Various robotic platforms have been used for RAAM
systems with differing DoF and subsequent capabilities [27].
For RAAM systems, the most basic platform utilized in lit-
erature is 4-DoF robotic arms such as SCARA arms. These
robotic platforms allow for large-scale and multi-arm sys-
tems but have limited uses in advanced slicing methods due
to their relatively low degrees of freedom. The most com-
mon configuration of robotic arms used for RAAM are 6-
DoF systems which allow for motion in all directions within
3D space (Figure 3). Such flexibility allows for the use of
advanced slicing methods, with limitations resulting from
the design of the end effector (e.g., maximum nozzle an-
gle) and the AM process implemented. Beyond high DoF
single arms, higher DoF systems come in two main forms:
mobile platforms and rotary tables. To enable large-scale
fabrication, authors have implemented high DoF robot arms
onto mobile platforms for up to 3 additional DoF [42]. This
allows for fabrication while the platform is moving or for
the robotic arm to reposition to a new location which both
increase the effective build volume of the system. Rotary
tables are also commonly integrated into RAAM systems
which typically allow for the rotation of the part in additional
axes. Notably, the use of redundant DoF allows for recon-
figuration while retaining end effector orientation [43]. This
allows for more flexibility for motion planning which can
result in lower jerk and prevent the need for reconfiguration.
2.1. C-RAAM Systems

Multi-arm RAAM systems, or C-RAAM systems, uti-
lize multiple robotic arms with overlapping build volumes
to create components with enhanced capabilities. C-RAAM
configurations can afford improved fabrication speeds, in-
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Figure 3: Single-arm RAAM systems are typically utilized for material extrusion processes such as FFF [44] (left) and directed
energy deposition processes such as wire arc additive manufacturing [22] (right).

creased maximum build volume, and heterogeneous tooling
capabilities superior to that of single-arm RAAM systems
(Figure 4). As these systems require the coordination of mul-
tiple arms to cooperate to complete a single part, they are
indicated as cooperative robotic arm additive manufactur-
ing systems whereas collaborative additive manufacturing
systems [46] typically refer to coordination between robotic
arms and humans.

The capabilities of a C-RAAM system are largely dic-
tated by the usable build volume as defined by the place-
ment and orientation of the integrated robotic arms. The
critical regions within the reach of a robotic arm are funda-
mentally where material can be deposited without collision
and onto a substrate which is a subset of the typical config-
uration space 𝐶 (i.e., the set of all valid arm configurations
𝒒). From this subset of the configuration space, a single-arm
RAAM system has a build volume 𝑉 defined by the region in
which the arm can deposit material given its geometric con-
straints. A C-RAAM system which contains some 𝑛 number
of robotic arms has build volumes 𝑉𝑛 of each robot arm in
the system according to its configuration with the associated
regions 𝑉𝑒(𝑛), the exclusive build volume which can only be
reached by the 𝑛th arm, and 𝑉𝑗(𝑛,𝑚), the joint build volume
between overlapping arms 𝑛 and 𝑚 (Figure 5). The effec-
tive build volume 𝑉𝑒𝑓𝑓 is then the sum of all exclusive and
joint build volumes of the system. The capabilities of a C-
RAAM system are well described by the proportion of the
total exclusive build volume 𝑉𝑒 and total joint build volume
𝑉𝑗 defined by

𝑟𝑉 =
𝑉𝑒
𝑉𝑗

(1)

A high-overlap C-RAAM system possesses a volume ra-

tio 𝑟𝑉 < 1 where overlapping build volume exceeds ex-
clusive build volume. C-RAAM systems are high over-
lap most commonly in heterogeneous tooling configurations
(e.g., multi-material, multi-resolution, and cooperative sens-
ing) where multiple arms must work in or near the same re-
gion. A low-overlap C-RAAM system possesses a volume
ratio 𝑟𝑉 ≥ 1 where exclusive build volume is equal to or
greater than overlapping. Such configurations are typically
used in large-scale RAAM applications where tooling is ho-
mogeneous; the joint build volume region is then necessary
but not crucial to the capabilities of the system (and is often
minimized). As all C-RAAM systems must determine the
location of placement for stationary arms, the value of 𝑟𝑉by configuration must be carefully selected according to the
desired capabilities of the C-RAAM system. For systems
with mobile arms [42, 47] where the build volume of each
agent shifts, build volume evaluation should be considered
across the time of manufacturing. If build volumes overlap
during instances of the manufacturing process, agents are
cooperating and can be classified according to the volume
ratio described.

Large-scale C-RAAM systems that integrate multiple
homogeneously tooled cooperating arms have been previ-
ously explored in both stationary and non-stationary con-
figurations [11]. Shen et al. [33] integrated four 4-DoF
Dobot version 2.0 robotic arms for large-scale FDM fabri-
cation through overlapping build volumes. Using this sys-
tem a 300 mm × 250 mm part was fabricated with each arm
completing a separate segment while avoiding collisions be-
tween arms. Such systems can be further expanded by addi-
tional arms, though this is primarily limited to a single axis
as expansion in either the Z axis or in both X and Y axes are
constrained by robot arm geometry and interference of the
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Figure 4: Multi-arm C-RAAM systems offer varying capabilities according to their configuration including a) cooperative sensing
capabilities [34], b) low overlap large scale printing [33] and c) high overlap multi-arm fabrication [45].

Figure 5: Multi-arm C-RAAM configurations for a) low overlap (e.g., large-scale fabrication with homogeneous tooling) and b)
high overlap (e.g., multi-material fabrication with heterogeneous tooling).

robot arm itself. Mobile manipulators were used in coordi-
nation by Zhang et al. to fabricate a concrete bridge structure
spanning over 2 meters in length [42]. While mobile ma-
nipulators have greater advantages in expanding build vol-
ume, localization and coordination of arms within the sys-
tem becomes increasingly complex as well as both path plan-
ning and motion planning of the system. Both multi-arm
approaches greatly improve the effective build volume of
the system but incur limitations resulting from the increased
control complexity of the system.

C-RAAM systems composed of heterogeneously tooled
arms offer alternative advantages and capabilities compared

to homogeneously tooled systems. Bhatt et al. integrated
two RAAM systems with varying nozzle sizes (0.4mm and
0.8mm) to improve surface quality while retaining high fab-
rication speeds [35]. Conformal printing was used for the
secondary fine arm, further improving mechanical strength
and removing the stepping effect typical of 2D planar slicing.
Secondary arms can also be used for multi-material printing
for improved material properties. This includes fiber rein-
forced material extrusion where a secondary robotic arm lays
fiber between layers to improve part strength [48].
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3. System Control for RAAM
Robotic manipulators require sufficient control of mo-

tors to realize the desired motion and operation of the end
effector. The planning and execution of this motion are con-
ducted in two primary steps: toolpath planning and motion
planning. Toolpath planning, or the determination of the de-
sired path of motion of the tool center point (TCP), is defined
according to the geometry of the part and is conducted be-
fore the motion planning of the arm. For RAAM systems
this is composed of a "slicing" step whereby a part file is
parsed into individual layers from which a toolpath can then
be planned for each slice. Deposition of material follow-
ing the toolpath then creates the desired geometry in a layer-
by-layer fashion. Motion planning, or the determination of
the inverse kinematic solution to afford motion to a desired
point or end effector orientation, is conducted after a tool-
path plan has been established to execute the desired motion
of the end effector. For gantry-style AM platforms, motion
planning is solved during the slicing step due to their trivial
inverse kinematic solutions. High DoF systems with exceed-
ing large potential configurations require motion planning to
determine the path plan (the set of configurations to move
between from the target and initial configuration) and trajec-
tory plan (the time-dependent transition between path plan
configurations). A general workflow of a RAAM system and
the role of slicing and motion planning is described in Figure
6. The pertinent areas of research and methods applicable
for RAAM systems within slicing and motion planning are
discussed in the following sections.
3.1. Slicing

Slicing for AM describes the multi-step process to gener-
ate instructional code from which a part can be fabricated in
a layer-by-layer fashion. The code that is generated, typically
g-code, is a function of various slicing parameters depend-
ing on the AM process (e.g., layer height, road width, and
infill percentage). A 3D object file (e.g., STL and OBJ) is
segmented into individual layers using surfaces where each
layer is a set of closed loop contours. A toolpath plan is then
generated from these contours to fabricate each correspond-
ing layer; this can then be interpreted into the appropriate
machine code (e.g. g-code) for the system. Commands that
instruct arm motion can be task or transfer motions; task mo-
tions call for the deposition of material whereas transfer mo-
tions do not and are for repositioning (i.e., rapid commands).
The determination of the toolpath plan within slicing is often
described as path planning in RAAM literature [49]. While
this might be analogous to systems with trivial inverse kine-
matic solutions (e.g., 3-DoF gantry style printers), this is a
misnomer for higher DoF RAAM systems, as multiple so-
lutions are possible and therefore only describe the motion
of the TCP. To alleviate this ambiguity, the path generated
during slicing for the end effector is specified as the toolpath.

Conventional slicing approaches are conducted during
the pre-processing step where machine instructions are gen-
erated for the fabrication of the entire part in a one-time oper-
ation. Recently, authors such as Borish et al. have proposed

the use of "on-demand" slicing where slicing is conducted
in partial sub-sections for closed-loop feedback capabilities
[50]. Both open and closed loop slicing approaches follow
the same general slicing steps, with the main distinction of
closed-loop being the segmentation of the CAD file and us-
ing sensing feedback to modify the slicing process in situ.

Conventional AM systems utilize 2D slicing procedures
whereby a single axis is used as a reference to then generate
2D cross-sectional slices according to a desired layer height.
More slicing methods that modulate the shape and orienta-
tion of these layers are enabled from higher DoFs typical of
RAAM systems affording reductions in support material us-
age and enhanced part strength. For C-RAAM systems that
integrate multiple RAAM systems, the decomposition of
parts into sub-sections must be determined. These sections
then undergo typical slicing processes to enable parallel co-
operative printing and realization of the final desired geom-
etry. The following section reviews advanced approaches to
slicing (i.e., multi-axis and non-planar) for RAAM systems
in addition to decomposition methods and considerations for
C-RAAM systems.
3.1.1. Multi-Plane Slicing

While conventional 2D planar slicing uses a single plane
from which slices are created, multi-plane slicing defines
multiple planes for reduced support material usage and im-
proved part strength. Auxiliary planes are created accord-
ing to user criteria or through part decomposition algorithms
which decompose parts to optimize objective functions. Var-
ious approaches have been investigated for multi-plane slic-
ing primarily in FFF processes due to their reliance on sup-
port material for complex geometries and overhangs. Ap-
proaches for multi-plane slicing fall into two categories, dis-
crete and continuous plane shifting.

Discrete axis shifting uses a set of predefined planes to
switch to which are typically selected according to geomet-
rical constraints such as the fabrication of lattices. Ishak et
al. proposed a discrete multi-plane RAAM implementation
for FFF process integrated with a 6-DoF Motoman SV3X
robotic arm [52, 53]. For specialized geometries such as lat-
tice structures, multi-plane slicing can reduce the number of
layers and subsequent inter-layer seams to improve mechan-
ical strength [54]. To create these lattice structures, the orig-
inal STL was first decomposed using a custom Matlab script
into individual segments according to the plane from which
they were sliced. These individual sections were then sliced
in a conventional 2D planar manner using Repetier software
in the default normal plane orientation; the subsequent g-
code was then transformed back to the desired plane orienta-
tion with respect to global coordinates and recomposed into
a single tool path code. High-quality fabrication of lattice
structures in 4 different planes was achieved with structure
sizes corresponding to the size of the nozzle used (maximum
2mm) [55]. It is unclear how well the lattice toolpath method
generalizes to more complex lattice geometries compared to
the structures utilized to evaluate the approach, as well as the
exact mechanical performance increase that can be observed
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Figure 6: An example robotics additive manufacturing workflow including slicing, motion planning, process control using sensing
feedback, and digital twin models.

Figure 7: Multi-plane slicing method proposed by Wu et al. [51] comprises of a) decomposition to eliminate material usage which
is then translated into b) ordinal multi-plane slicing segments.

by utilizing this kind of technique. The greatest benefit of
discrete axis shifting is in processes where intralayer bond
is a constraint that can be mitigated which is an important
consideration for FFF, while other AM methods stand less
to gain from this path planning approach.

Continuous axis shifting utilizes planes generated at ar-
bitrary orientations to reduce support material usage which

subsequently improves surface quality, and reduces waste
material as well as post-processing operations (Figure 7).
Wu et al. proposed a decomposition algorithm for contin-
uous multi-axis path planning comprising of shape-based
coarse decomposition, sequence planning, and constrained
fine tuning [56]. The methodology was implemented on a
UR3 robotic arm controlled using robotic operating system
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Figure 8: Non-planar slicing falls into two categories, a) conformal which uses a top surface as a reference [44] and b) arbitrary
which uses alternative metrics such as a heuristic to define slicing planes [60].

(ROS) with a stationary extruder printing on a build plate
mounted on the end effector of the arm, allowing for support-
free printing of various geometries. This approach was fur-
ther extended by Gao et al. [57] which implemented global
optimization criteria to locate the planes to minimize the
support material area. Wu extended his original algorithm
using various optimization criteria including greedy, con-
strained greedy, and beam-guided greedy schemes aiming
to determine the best decomposition strategy depending on
part geometry [51]. These implementations each displayed
methods of greatly reducing or totally removing support ma-
terial usage, with criteria-based methods showing the best
performance in locating optimal part decomposition strate-
gies. However, these implementations rely on the readjust-
ment of the build plate to be normal to the direction of grav-
ity to eliminate the effect of overhangs while the extruder is
in a stationary configuration which limits the effective build
volume of the system. In instances where a substrate for sub-
sequent planes is not built from previous layers such as ex-
amples explored by Insero et al., layers must utilize variable
layer heights to reduce uneven material deposition. In this
work a variable infill algorithm is introduced for both planar
multi-plane [58] and later non-planar [59] multi-plane print-
ing to reduce layer thickness variation during printing. As
noted by the authors, the parts used to evaluate this method
still observed undesirable layer variation in addition to not
being suitable for geometries such as saddle surfaces.

3.1.2. Non-Planar Slicing
Non-planar slicing methods slice parts according to 3D

surfaces rather than 2D planes as conventionally used. Non-
planar slicing enables the reduction or removal of support
material for overhang geometries, enhances surface rough-
ness, and improves material strength for materials such as
reinforced carbon fiber [35]. Non-planar slicing for gantry
style platforms has been investigated for over a decade [61]
using both 3D toolpaths and the use of rotary tables, while
high DoF AM and RAAM systems have seen more recent
use [18]. The maximum convex angle is limited by the ge-
ometry of the end effector and the flexibility of the system,
lending greater advantages of non-planar slicing to RAAMs
over gantry-style platforms. Non-planar slicing methods are
categorized in two primary approaches: conformal and arbi-
trary (Figure 8).

Conformal non-planar slicing methods use a top refer-
ence surface to slice parts which improves surface finish by
removing the stepping effect observed with conventional 2D
planar slicing. Moreover, the smoothed top surface creates
enhanced part strength [62] which can be further increased
through the use of fiber reinforced materials [35, 44]. Ap-
plications of conformal slicing for RAAM have been inves-
tigated in FFF processes as early as 2015 [16] with many
examples while applications with DED processes have only
more recently been investigated. The most common means
of generating conformal toolpaths is by projecting a pla-
nar toolpath onto a reference surface, creating a 3D con-
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formal toolpath that can then be registered to the top layer
of a part [63, 44]. While sufficient for creating initial con-
formal toolpaths, further adjustments must be made to en-
sure sufficient print quality. Bhatt et al. explored appli-
cations of conformal slicing in DED processes with non-
planar substrates in addition to modifying tool paths to re-
duce material over-deposition in sharp corners and ensure
proper material deposition [64]. Laser scanning was later
used to evaluate the geometric deviation found between parts
for post-processing machining operations [65]. Conformal
non-planar slicing can also afford the creation of overhang
structures that would not be suitable for conventional slicing
methods. Kaji et al. [66] created a hollow thin-wall dome us-
ing a 6+2-DoF L-DED RAAM system which used a custom
slicing algorithm to generate toolpaths which avoids colli-
sion between the nozzle and the part according to the noz-
zle geometry and deposition overhang. A maximum over-
hang of 32.530◦ was achieved with 2% diameter deviation
of the finished part. The approach relies on the use of a 2-
axis servo positioner, however, the algorithm’s applications
to conventional 6-DoF systems are unclear. Multiple refer-
ence surfaces can be used to enable smooth surfaces on both
the top and bottom surfaces of prints as explored by previous
authors in FFF processes [67, 35]. The application of these
kinds of conformal toolpath strategies which rely primarily
on projection have limited application to complex geome-
tries. Further development of algorithms to handle complex
surfaces (e.g., toroidal) must be realized to leverage confor-
mal benefits across a wider range of part geometries.

Arbitrary non-planar slicing methods define a 3D sur-
face from which slicing is conducted that is not defined by
a reference surface of the part. For FFF processes that use
fiber reinforcement, this can allow for the careful design of
reinforcement regions for substantial improvement of me-
chanical properties. Arbitrary slicing methods commonly
use affine and non-affine transformations for regions to then
be sliced in a planar manner; these sliced paths then undergo
an inverse transformation to regain the original shape with
a transformed non-planar toolpath plan. The basis for the
transformation is defined by the user or according to the co-
ordinate system utilized (e.g., spherical, non-planar).

Coordinate system shifts for improved fabrication of
parts according to their geometry have been commonly ex-
plored by previous authors. Zhao et al. developed a non-
planar slicing method to reduce the reliance on support ma-
terial for parts such as propellers through a cylindrical slic-
ing approach [68]. The propeller features are separated from
the main body of the cylinder of the propeller to allow for
individual slicing. A transformation inverse to the desired
slicing geometry is applied to the individual segments which
then is sliced in a planar manner. The slice then undergoes
the reverse transformation to regain the original geometry
and create curved slices. This methodology is also applied to
a curved part fabricated on a curved build plate. Geometries
with overhangs pose a problem for DED processes, for which
Dai et al. developed a novel PCA-based toolpath planning
algorithm to create additional support for subsequent over-

hang layers [69]. Mechanical strength of FFF parts that use
continuous fiber reinforcement can be greatly enhanced us-
ing arbitrary non-planar slicing. Continuous fiber-reinforced
thermoplastic composites (CFRTPCs) utilize in-nozzle or
out-of-nozzle [70] impregnation of fibers to enhance me-
chanical strength axially along fiber orientation over conven-
tional FFF processes. Therefore, slicing methods which op-
timally orient fibers for enhanced mechanical properties can
fully leverage the advantages of CFRTPC processes. Fang
et al. [60] developed a slicing method to generate tool-
paths for a cooperative fabrication RAAM system to opti-
mally orient fibers according to the stress fields of printed
components. Stress fields of the desired component are cre-
ated from finite element analysis (FEA) from which prin-
cipal stress lines are generated. The set of principal stress
lines then guide the arbitrary non-planar slicing process in
which continuous fiber reinforcements are placed in a simi-
lar manner. Additional optimization is conducted to ensure
continuity around critical load-bearing regions to maximize
strengthening from reinforcement. Failure loads and model
stiffness of the case study components observe improve-
ments ranging from 105.1%-544.0% and 59.5%-140.2% im-
provements, respectively. The authors note high fabrication
times due to slow feed rates of robot motion and limits in
their optimization approach to remove small slice patches.
Furthermore, the bracket-type parts evaluated share some
homotopy-equivalence and are evaluated with simple (sin-
gle) forces; the capabilities of the methodology to handle
higher complexity parts and loading which result in more
complex principal stresses is unclear. The advantages of
non-planar CFRTPC printing were also explored by Zhang
et al. for the printing of reinforced shell structures [44].
A workflow for high DoF CFRTPC printing using a 6-DoF
UR3 robotic arm is proposed and evaluated on a conical shell
structure. Greatly improved compressive strength and stiff-
ness were observed by properly orienting the fiber directly
versus conventional planar printing methods. Support of ar-
bitrary non-planar layers prevents the use of conventional
support algorithms used in FFF software inspiring Zhang et
al. [71] to develop a support generation algorithm to address
this drawback. A conventional support-tree algorithm is ex-
tended to handle instances where nodes must be joined from
differing layers of deposition typical of non-planar printing.
According to threshold angles defined, nodes are used to
generate the support-tree join such that non-planarly sliced
prints can be suitably supported for high print quality.
3.1.3. Considerations for C-RAAM

For C-RAAM systems which implement multiple ex-
truder robotic arms, a part must be decomposed into sepa-
rate sections such that each arm can contribute to the genera-
tion of the final geometry in parallel. Fabrication must occur
while avoiding collision between arms which can be accom-
plished during toolpath planning or during motion planning.
The following sections will discuss segmentation and pre-
process collision avoidance approaches for C-RAAM sys-
tems.
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Figure 9: Segmentation for C-RAAM systems defined by a) an intersection surface for two arms [72] and b) planar segments for
three arms cooperative printing [73].

Segmentation: Decomposition of CAD models (Figure
9) into separate segments is a critical requirement of all C-
RAAM systems which utilize build regions that exceed the
intersection region between build volumes, meaning areas of
the part can only be created by a subset of arms within the
system. Therefore there will always be some intersection
or boundary between parts fabricated in complementary re-
gions that then meet sections located within intersection re-
gions which can result in a decrease in mechanical properties
[74]. Furthermore, part segmentation is necessary to allow
for arms to work in parallel in any C-RAAM configuration.
The determination of these sub-sections of parts is therefore
critical to the structure of a C-RAAM system.

C-RAAM systems whose configuration has little over-
lap between build volumes, typically for large-scale applica-
tions, have subsequently small regions from which the sec-
tion boundary can be defined. Nevertheless, the selection
of boundary location to create sections and its interface sur-
face plays a critical role in the quality of the final compo-
nent and its mechanical properties. As a part of a novel FFF
C-RAAM system developed by Shen et al., a segmentation
algorithm is introduced to minimize the difference in layer
completion between each fabrication robotic arm [33]. Sim-
ulated annealing is utilized with an objective function that
seeks to evenly distribute the internal region of the contour.
A relaxation technique developed by Metropolis et al. [75]
is used to prevent local optimal solutions. The resulting de-
composition is sufficient to ensure near-equal layer competi-
tion times, but is dependent on the position of the part with
respect to the build volume (e.g., center of the part and part
geometry) in addition to being implemented for processes
which must maintain equal layer heights during fabrication.
In instances where a C-RAAM system can allow for desyn-

chronized layer fabrication, including instances of advanced
slicing methods, such an approach would not be required.
While most methods of part decomposition utilize 2D planes
to split parts, recent works have investigated alternative 3D
surfaces by which sections can be defined. Manoharn et
al. [72] in a preliminary work proposed a methodology to
create components using a C-RAAM system with an inter-
locking interface structure to increase bond strength between
decomposed volumes. Similarly, Stone et al. [76] utilized
non-planar interface layers to define decomposition regions
to evaluate the performance of a novel mid-process collision
avoidance algorithm. These studies do not investigate the
impact of these interface patterns on mechanical properties
as their focus is on system development improvements (i.e.,
decomposition and collision avoidance improvements, re-
spectively). As FFF processes suffer from inter-layer weak-
ness which gives rise to its antistropic properties [77], it is
critical to the feasibility of C-RAAM systems to understand
how the definition of the inter-section boundary affects the
overall mechanical properties of parts. DED similarly suf-
fers from antistropic properties [78] again suggesting that the
selection of interface orientation and shape has an impact on
mechanical properties.

Segmentation for C-RAAM can also be conducted on
a discrete point basis rather than entire sub-sections of the
part. Arbogast et al. developed a bead scoring system for
discrete deposition points within a C-RAAM DED process
to determine the ordered list of beads to assign to each of
the three robots within the cooperative system [79]. Three
ABB IRB 4600 robots were placed such that their build vol-
umes each overlapped a center positioner table resulting in a
high-overlap C-RAAM system. Points within a layer which
are closer to the base of the robot score higher helping to
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ensure that arms fabricate close to their base and away from
other arms. In addition, beads were marked as either local or
global depending on the distance of the bead from the cen-
ter of the base of any arm; if the bead stretches out across
the entire build plate and requires high clearance from other
arms, it is considered a global bead. The printing process is
then controlled such that all arms work jointly on either lo-
cal or global bead regions. The methodology is sufficient for
high overlap C-RAAM but it is not clear how it generalizes
to low overlap configurations. In addition, there is no discus-
sion relating to the collision avoidance method used after as-
signing beads to robotic arms which is not guaranteed from
the existence of multiple valid inverse kinematic solutions.

Collision Prevention: In C-RAAM systems where colli-
sion is possible between arms during fabrication, collision
avoidance can be assured through toolpath planning consid-
erations in a preventative pre-process step through the deter-
mination of toolpath order. Depending on the system config-
uration, such as a low-overlap C-RAAM platform, schedul-
ing algorithms can be used to prevent the opportunity of col-
lision during printing without the need for in-situ collision
assessment [33, 79]. Regions or operations where collisions
could take place (e.g., printing in overlap build regions or
overlapping operations) are identified during the slicing pro-
cess; operations are then ordered such that multiple robots
do not work in the marked region at the same time, pre-
venting the potential of collisions. This inter-robot colli-
sion avoidance approach is implicit and applicable to sim-
ple system designs and part geometries where overlap is low
and section borders are trivial (i.e. planar, high separation).
For higher complexity systems or parts within high build
volume overlap, implementing such an approach would re-
sult in high system constraints and extended wait periods to
prevent building within overlapping build areas. In these
instances, a combined toolpath and motion-planning-based
collision avoidance approach that affords collaborative fab-
rication within overlap regions is more desirable. Previous
works by Poudel et al. developed planners for constrained
[80], centralized and decentralized [81] planning of mobile
C-RAAM systems. These approaches allow for multi-robot
coordination to print large scale parts to minimize the make-
span (i.e. total print time) while maintaining collision-free
manufacturing. These approaches do not consider the im-
pact of the segmentation process, however, which has been
shown to have an impact on the mechanical performance of
finished components [74].
3.2. Motion Planning

Once the required toolpath has been established through
slicing, the control of the robotic system to achieve the de-
sired motion must be determined. The machine commands
for task or transfer motion begin at an initial position 𝒒𝑖𝑛𝑖𝑡𝑖𝑎𝑙and specify a final position 𝒒𝑓𝑖𝑛𝑎𝑙 where 𝒒 = [𝜃1,⋯ , 𝜃𝑛]for an 𝑛 DoF robotic system. The configuration 𝒒 is an ele-
ment of the configuration space 𝐶 from which we must lo-
cate a valid solution which is obtained via motion planning
(Figure 10). Motion planning is composed of two aspects,

Figure 10: Motion planning structure which includes path
planning and trajectory planning.

path planning, and trajectory planning [38]. Path planning
seeks to determine the set of configurations 𝒒 to transition
between the initial configuration 𝒒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and target configu-
ration 𝒒𝑡𝑎𝑟𝑔𝑒𝑡 [82]. Shifting between the ordered set of in-
termediary configurations through the control of joints al-
lows for control of the target configuration. Trajectory plan-
ning defines the time-dependent transition between the set
of configurations to obtain joint velocities 𝒒̇ and accelera-
tions 𝒒̈. The motion plan solution must take into account the
geometric and kinodynamic constraints of the robotic sys-
tem [83] in addition to task constraints (i.e. task or transfer
motion) to obtain valid solutions. Motion planning meth-
ods for RAAM must effectively locate optimal solutions for
both path planning of intermediary points and the associated
trajectory plan.

As RAAM systems operate within a constrained setting
where a part is being fabricated, the optimal motion plan-
ning solution must also avoid collision with the surrounding
environment [38]. Therefore, valid solutions of the calcu-
lated motion plan must be located in the subset of the con-
figuration space 𝐶 which does not collide with obstacles
𝐶𝑓𝑟𝑒𝑒 with all other non-valid solutions which do collide be-
ing under subspace 𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 [84]. Distance measurement
algorithms for triangular meshes, such as the Gilbert-John-
Keerthi (GJK) algorithm [85], are used to determine colli-
sions with spherical approximations of objects commonly
used to reduce computational complexity [86]. The determi-
nation of𝐶𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 accounts for the majority of path planning
time in conventional methods [87] as a result of the number
of queries required to locate a solution. Therefore, much of
recent research has sought to improve the search of 𝐶-space
through the use of ML methods [88, 89], though these ap-
proaches are not well suited for dynamic environments.

Motion planning for C-RAAM systems must also con-
sider the potential for inter-arm collisions which can occur
when both arms are operating in overlapping build volume
regions. Stone et al. developed an in-situ collision detec-
tion mechanism whereby a pause would be instantiated if the
next motion would result in an overlapping collision region
for SCARA arms for low-overlap C-RAAM [76]. When the
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next position is determined from the sliced code during mo-
tion planning, the area created by the 2D orientation of the
SCARA arms between its original and final position is calcu-
lated with respect to each robot’s location. The areas are then
checked to see if they overlap; if the overlapping condition
is met, a potential collision has been detected in the next ac-
tion. One arm is then selected to pause for that operation and
continues when the check passes again. The algorithm used
is lightweight and allows for this estimate in real time dur-
ing the motion planning phase. However, the method takes
advantage of the geometry of the SCARA robots which al-
lows for easy area estimation. The calculation for the area
becomes more complex as the degree of freedom increases,
therefore it is unclear how much of a computational burden
and delay is imposed as system complexity elevates. Meth-
ods for motion planning-based collision detection must be
lightweight enough to calculate in inter-layer or pre-process
steps to ensure minimal delays are imposed.

Motion planning can be conducted in an offline or on-
line manner depending on the computation efficiency of the
approach and the complexity of the motion planning prob-
lem. For repetitive tasks such as welding or production, of-
fline planning is generally suitable. The same can be said for
RAAM applications which use feed-forward control, but has
limitations in adaptability which is critical for defect mitiga-
tion. In such instances where sensing feedback can be lever-
aged, online approaches are more appropriate as the toolpath
plan, and subsequently the motion plan, then can be changed
on the fly with minimum delay. As sensing is an integral
aspect to maintaining quality of AM processes, it follows
that online motion planning approaches are most suitable for
RAAM applications where mechanical properties of compo-
nents are a primary concern.
3.2.1. Motion Planning Methods

Various methods have been explored in the literature
to optimally locate motion planning solutions for both path
planning and trajectory planning [90]. For RAAM applica-
tions the toolpath (i.e. the path of the end effector) task mo-
tions are predefined during the slicing step which constrains
the motion planning problem compared to transfer motion
applications (e.g., pick and place, assembly). Furthermore,
optimal solutions for task motions do not consider the min-
imization of execution time, as the velocity profile of task
execution is predefined. Selection of motion planning meth-
ods therefore must optimally locate valid path plans and tra-
jectory plans that minimize defect generation and minimize
motion planning time.

Particular considerations must be made for the selec-
tion of motion planning methods for use in RAAM systems
as path planning and trajectory planning outcomes have a
massive impact on the quality of the AM process. Motion
planning conventionally seeks optimal solutions according
to cost functions which aim to minimize criteria such as
computational time, path length, and path jerk [91]; this typ-
ically is in the context of transfer motions and can result in
non-linear path planning between initial and target configu-

rations. For RAAM systems that predefine the intermediary
path of the TCP, minimization of jerk and computing time
are paramount whereas the TCP trajectory between paths is
determined by the task. Motion planning algorithms which
efficiently search the configuration space given these con-
straints are most suitable for RAAM applications.

Conventional motion planning algorithms for industrial
robotic arms primarily fall into three main categories [38]:
artificial potential field (APF), bio-inspired heuristic, and
sampling-based methods. APF was first introduced by
Khatib et al. [92] where obstacles apply an artificial re-
pulsion force and the desired final location applies an ar-
tificial attraction force such that the total artificial field is
differentiable to locate a solution. Its primary advantage
lies in dynamic environment applications [38], but suffers
from local minimums which prevent solutions from being
found [93]. Various works have investigated approaches
to minimize the local minimum drawback but not without
additional drawbacks such as suboptimal solutions or in-
creased complexity [38]. Bio-inspired heuristic methods in-
clude approaches such as genetic algorithms [94], particle
swarm optimization [95], and ant colony optimization [96].
One of the most widely used heuristic methods for motion
planning is the A* algorithm [97] that evaluates heuristics
on nearby nodes to locate optimal paths. Variations of A*
include Theta* [98], which propagates information along
edges, and D* [99], a dynamic variation that is able to han-
dle changing environments. While heuristic methods have
good overall performance they generally require long exe-
cution times to determine optimal paths in complicated en-
vironments [38]. Sampling-based methods include proba-
bilistic roadmap method (PRM) and rapidly-exploring ran-
dom trees (RRT). PRM locates an optimal path in a dis-
cretized representation of the configuration space [100] in a
probabilistically complete manner [101]. RRT creates ran-
dom trees within the configuration space that are incremen-
tally expanded to random nodes within the c-space [102].
The generation of random nodes has a large impact on the
performance of RRT leading to variations which use biased
sampling to minimize exploration [103, 104]. These motion
planning algorithms are most widely developed to locate op-
timal solutions for transfer motions with unconstrained TCP
paths. RAAM applications are composed of primarily task
motions and constrained TCP paths which greatly reduces
the complexity of locating valid motion planning solutions.
For these reasons commonly used methods such as A* or
RRT suffice, though they can be inefficient in location solu-
tions due to not properly handling motion constraints.

ML motion planning methods can offer superior motion
planning solutions to conventional methods. Deep learning
(DL) is one of the widely used ML models due to its capabil-
ities in complex contexts over basic neural network architec-
tures [105]. DL is most commonly used to improve the ran-
dom sample generation of sampling-based motion planning
methods to improve efficiency [38, 106]. DL has also been
applied as a standalone motion planning network (MPN)
by Qureshi et al. composed of an environment encoding
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model and a planning model which showed efficient perfor-
mance in up to 7-DoF systems [107]. DL methods have also
been applied to constrained motion planning applications by
Qureshi et al. as an extension of the MPN called constrained
motion planning network (CoMPN). Model inputs are ex-
tended to include start and goal constraints to create mo-
tion plans which follow constraint manifolds defined by the
task. The model was further improved to decrease compu-
tational time by supplying sampling-based methods with ef-
ficient sampling nodes [108]. Reinforcement learning (RL)
methods have also been widely investigated which use vir-
tual training environments to teach behaviors to agents that
conduct actions within the environment to optimize reward
functions [109]. Various RL methods have been applied to
motion planning applications including actor-critic models
[110] and deep deterministic policy gradients [111]. These
approaches are most commonly applied to complex transfer
motion tasks such as manipulation which are a challenging
task for conventional motion planning methods. The defini-
tion of the reward function is critical to training the desired
behavior and must be carefully designed to ensure training
convergence. ML-based methods can greatly improve con-
ventional sampling methods as well as serve as superior al-
ternatives when trained appropriately and in the right con-
text, but like all large ML models suffer from challenges
of data acquisition. ML models require sufficient training
points either through simulation or physical trials which can
be incredibly time consuming and resource intensive, espe-
cially for DL and RL models. Digital training environments
and their capability to transfer to physical implementations
remain a bottleneck in model development and must be care-
fully considered to achieve desirable real-world performance
over conventional sampling methods.

Motion planning algorithms which consider constraints
found in task motions greatly improve computational effi-
ciency over unconstrained conventional methods [113] and
have been explored both in conventional and ML-based ap-
proaches. Motion planner constraints are typically repre-
sented as a distance from the surface of a constraint man-
ifold [114]. Kingston et al. identified five methodological
approaches to handling constraints for sampling-based mo-
tion planning: 1) relaxation, where a tolerance is added to
the constraint function from which sampling is conducted,
2) projection, where a configuration is projected onto the
surface of the implicit manifold and stepped backward into
a satisfactory configuration, 3) tangent space, where a tan-
gent space is generated from the constraint function, 4) at-
las, where a piecewise linear approximation of the mani-
fold is created using tangent spaces, and 5) reparameter-
ization, where the robot configuration is reparameterized
to allow for direct sampling of a satisfactory configuration
space. Though not explicitly explored in RAAM applica-
tions, motion planning methods discussed by Kingston et al.
[113] within these fields offer solutions to task motion plan-
ning constraints which can be applied to RAAM applica-
tions. Furthermore, complex planning environments found
in C-RAAM systems can be represented as constraint man-

ifolds to improve motion planning capabilities. Constraint
manifolds can also be applied to ML-based motion plan-
ners and have been explored by Qureshi et al. [115] who
extended their neural manipulation planning method to han-
dle constraints. The neural manipulation planner undergoes
a projection-type constraint operation to transform motion
plans from the planner to be constraint-satisfactory. Though
the application is for manipulation tasks, similar approaches
can be applied to industrial tasks such as those in RAAM
systems. Li et al. [116] devised an alternative approach
for constraint handling motion planning using an actor-critic
RL model. The RL model reward function is altered to han-
dle the velocity constraints by incurring a penalty when ex-
ceeding the desired velocity when the arm is moving far
from the target position. The trained model was able to
complete motion planning tasks while maintaining veloc-
ity constraints successfully for a simulated space manipula-
tion task. Similarly, this approach can be applied to RAAM
systems through modified reward functions which ensure
motion plans that maximize part quality and minimize the
chance of creating a defect.
3.2.2. Software

Many advancements in software for robotics control have
been made in the last two decades for both closed and open-
source applications. Software solutions to motion planning
must be capable of handling path and trajectory planning as
well as collision detection. Closed-source software for con-
trol, typically supported by the manufacturer, offers seam-
less integration with supported machines at the cost of cus-
tomizability. While most robotic controllers do have the ca-
pability to receive commands and conduct motion planning
directly, manufacturer-supported software specifically refers
to control from an external PC. Open-source software, while
less frequently used, allows for configuration but often re-
quires steeper learning curves and is more difficult to inte-
grate. Software used in literature to facilitate control and
motion planning of RAAM systems is discussed in the fol-
lowing sections in regard to their advantages and drawbacks.

Closed-source software for RAAM control is available
both from manufacturers and industrial software providers.
As the use of robotic arms within industrial applications has
been well established, robot manufacturers have developed
their own bespoke software for motion planning and control
of their robots. Manufacturer software offers great ease of
use at the cost of customization and is most frequently used
for fundamental RAAM applications which typically use
robotic arms from well-established robotics manufacturers
[117]. Common robotic manufacturers used for RAAM ap-
plications include Fanuc, ABB, Yaskawa, and Kuka robotic
arms [118]. Fanuc offers the ROBOGUIDE software to con-
trol Fanuc robotic arms for industrial applications [119] (i.e.,
pick and place programming, in addition to the PC Devel-
oper’s Kit (PCDK) software for more manual control (i.e.
direct access to variables, registers, positions, and alarms).
While some authors have used PCDK despite its drawbacks
(i.e., no motion planning capabilities or collision avoidance)
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Figure 11: Motion planning frameworks such as MoveIt allow for the integration of various different motion planning methods
and libraries (gray) into a ROS2 framework of nodes (orange) to communicate to external hardware (brown) to facilitate RAAM
(figure derived from MoveIt documentation [112]).

Figure 12: Comparison of sensor fidelity for process monitoring with respect to data sampling frequency and feedback control
implementation.

[120, 66], the majority of RAAM research using Fanuc arms
opt to use custom software besides ROBOGUIDE to facili-
tate their control [121, 122].

ABB developed the RobotStudio software for control
of their robotic arms and supports a variety of features for
industrial task planning for both task and transfer motion.
Closed-source non-manufacturer options include RoboDK
which offers CAM capabilities as well as extensions for AM
support. Open-source software methods afford motion plan-

ning solutions with the advantage of being customizable to
suit the needs of desired system capabilities while being
typically difficult to configure and use compared to closed-
source options. The most commonly used open-source mo-
tion planning solution is ROS or ROS2 (version 2) originally
developed by Quigley et al. [123] for prototyping and re-
search applications. It operates as a middleware which sup-
ports a large range of packages and libraries to be configured
to a user’s need and utilizes a publish-subscribe infrastruc-
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ture agnostic to the robotic system (Figure 11). Because of
its design philosophy and long development history, ROS
has seen widespread use in RAAM applications. It is par-
ticularly suited for bespoke RAAM systems which require
customized control such as the integration of sensors. This
framework was later improved upon in ROS2 which was re-
designed with production applications in mind to improve
major shortcomings in ROS (e.g. not real-time capable)
[124]. For basic RAAM applications, many closed-source
and manufacturer-supported software solutions are sufficient
for the desired degree of control. However, for systems that
use modified platforms or integrate external systems such as
sensors, open-source software gives greater accessibility to
pertinent data and control is more suitable. When determin-
ing which software to use, understanding this trade-off of
initial startup time (which is longer with open-sourced soft-
ware) and the desired degree of machine control and data
accessibility is paramount to realizing the desired system.
3.2.3. Considerations for C-RAAM

As with single-arm RAAM systems, the primary chal-
lenge of motion planning of C-RAAM systems is the avoid-
ance of collision within the motion planning process. This is
exacerbated in C-RAAM systems where the amount of po-
tential configurations the system can take follows a squared
relation to the number of robots within the system. As
previously discussed, motion planning for RAM systems
is constrained by the toolpath generated for the associated
part. For toolpaths which apply collision prevention meth-
ods (e.g., prevents multiple arms from working in the same
joint build regions) then motion planning can be applied
as would be done for singular-arm systems. For toolpaths
which to not take this into consideration, a joint adjustment
of the toolpath and the motion plan must be conducted us-
ing collision detection methods to ensure that a valid order
of material deposition and configuration is selected for the
toolpath and motion plan of each arm. As this is a non-
trivial approach, the majority of C-RAAM works use col-
lision prevention methods rather than detection during the
motion planning process. While this does generate a valid
motion planning solution, it is not guaranteed to be optimal
with regards to manufacturing speed and quality.

The execution of motion plans for C-RAAM systems re-
quires software which can coordinate the control of multi-
ple arms without inducing latency or desyncronization that
could lead to manufacturing errors. For C-RAAM sys-
tems comprised of homogeneous manufacturers, manufac-
turer provided software naively supports multi-arm control.
For C-RAAM systems comprised of heterogeneous man-
ufacturers or custom robotic arms, open source or non-
manufacturer software options such as RoboDK or ROS2 are
better suited to handle the varying communication methods
required. RoboDK and ROS2 both have manufacturer sup-
ported resources as well as the ability to create your own
resources for custom robots. Open source software also en-
ables deeper control of motion planning processes which
could be beneficial to C-RAAM systems which utilize be-

spoke motion planning methods. These processes and the
configuration of the simulation environment can be time
consuming and require extensive coding knowledge, how-
ever, resulting in a greater lead time compared to manufac-
turer supported software.

4. Process Control for RAAM
A primary challenge of AM processes is the genera-

tion of defects during layer-by-layer deposition and their im-
pact on the mechanical properties of finished components.
These issues persist in RAM systems, which most com-
monly implement ME (e.g., FFF, FDM) [125] or DED (e.g.,
WAAM) [126] processes as a result of their suitability for
robot arm integration. FFF/FDM methods most commonly
suffer from voids [127], porosity [128], over/under extru-
sion, and warping/delamination [129]. Powder DED meth-
ods suffer from defects such as keyholing, porosity, lack of
fusion, and splattering, while wire DED methods such as
WAAM most frequently suffer from defects such as crack-
ing, voids, and humping [24]. Defects created within com-
ponents degrade mechanical properties such as fatigue life
and tensile strength which can be detrimental to critical ap-
plications of AM parts.

Sensors have been used throughout research in recent
years to identify defects throughout all stages of AM pro-
cesses. Data collected from sensors can be further leveraged
through the implementation of ML models [130] which are
exceptionally well suited to extract features from data col-
lected during AM processes and can be directly linked to de-
fects created mid-process [131, 132]. Various types of ML
models have been employed for defect detection and qual-
ity characterization [133] including hyperdimensional com-
puting [134], neural network-based architectures [135] and
support vector machines [136]. Data signals from multiple
sensors can also be fused together to further enhance process
monitoring capabilities [137]. The speed at which inference
is conducted affords real time monitoring of defects and con-
trol to greatly improve the quality of AM processes.

Feedback control from sensor data can occur in three
main stages of the AM process: 1) pre-process, where pre-
vious sensor feedback is used to inform future processes
and adjust parameters before manufacturing, 2) inter-layer,
where sensor feedback is used to adjust the manufacturing
process in between the creation of layers before the subse-
quent layer is started, and 3) mid-layer, where sensor feed-
back is used to adjust the manufacturing process while ma-
terial is being deposited within a layer. The type of sensors
integrated and analysis methods used to interpret feedback
dictate the level in which feedback control is feasible and
to what degree defects can be rectified within the fabricated
component (Figure 12). The advantages and drawbacks of
implementations within RAAM systems along these process
control levels are discussed in the following sections.
4.1. Pre-Process Calibration

AM systems including RAAM platforms contain many
process parameters initialized before the printing process be-
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Figure 13: Pre-process calibration methods for RAAM systems include toolpath adjustments to prevent defects such as over
deposition within sharp corners as proposed by Bhatt et al. [64].

gins which dictate the geometric dimensions and mechan-
ical properties of manufactured components. RAAM sys-
tems have two categories of process parameters, slicing and
manufacturing. Slicing parameters impact the generation of
the toolpath and include variables such as road width, layer
height, infill percentage, and infill pattern. These parame-
ters are typically static. Manufacturing parameters refer to
parameters of the extruder and the AM system and include
variables such as feed ratio, feed rate, and extruder temper-
ature. These parameters are set during pre-process but are
often modified on the fly. Pre-process operations must de-
termine the variables used during the fabrication process and
can be informed in many ways from sensor feedback and data
collected to further improve process quality.
4.1.1. Pre-Process Calibration Methods

Each AM process has specific parameters which modify
the function of the AM process and therefore must be op-
timally selected to achieve the desired process quality and
properties of the fabricated part. These process parameters
typically control material or energy feed parameters funda-
mental to the deposition mechanisms of all AM processes.
ME processes such as FFF/FDM which use hot-end nozzles
have process parameters including nozzle temperature, bed
temperature, and extrusion multiplier (e.g. ratio between ex-
trusion feed rate and rate of TCP motion) [138]. Arc DED
processes such as WAAM have process parameters including
travel speed, wire feed speed, current and layer height [139].
Laser DED (L-DED) processes have process parameters in-
cluding laser power and scanning speeds [140]. As many of
these AM processes are well established, previous literature
has explored the effect of process parameters through design
of experiments as well as ML-guided search methods such
as Bayesian optimization [141]. In this manner process pa-
rameters can be optimally selected before the manufacturing

process begins.
Slicing parameters such as layer height, infill percent-

age, infill pattern, feed rate, and feed ratio are utilized to
modify the generated toolpath according to the desired part
quality and geometry [142]. Parameters specific to the AM
process utilized are also determined during the slicing pro-
cess affording further adjustment to the quality of the pro-
cess and subsequent mechanical properties. According to
these selected parameters, the final toolpath generated is then
used to create the component. The appropriate selection of
these parameters is essential to minimize the prevalence of
defects and ensure sufficient mechanical properties for a de-
sired application. As with AM process parameters, many au-
thors have explored the effect of slicing parameters for DED
[37] and FFF [143] including for large-scale systems [144].
These studies translate to RAAM systems directly, though
customs systems still typically require calibration and exper-
imental tuning of parameters to obtain good-quality parts.

The pose of the workpiece frame within the build vol-
ume of RAAM systems can affect repeatability and overall
build quality. Determining the optimal pose of the work-
piece is paramount to ensuring high-quality RAAM manu-
facturing of parts in both single and multi-arm systems. Vo-
cetka et al. [145] investigated the impact of approach direc-
tion on repeatability of an ABB IRB1200 5/0.9 robot with a
manufacturer-stated repeatability of 0.025mm. A total of 24
target points within the workspace were approached from a
sphere of initial positions around the target position at differ-
ing radii, with verification measurements being conducted
with a Dantec Dynamics Q-450 with accuracy of up to 1µm.
Across 24 cases the maximum repeatability improvement
from the best approach direction versus the least advanta-
geous was 0.87mm, displaying the large impact approach
direction can have on repeatability. Ghungrad et al. [146]
developed an energy-quality map of the workspace such that
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Figure 14: Frame calibration for C-RAAM system can be formulated as a) solving 𝐴𝑋𝐵 = 𝑌 𝐶𝑍 [147] and b) can be expanded
to use both visual-based calibration and laser scanning for calibration of more than two arms [148].

a part can be positioned to optimally minimize energy usage
and positioning errors caused by calibration of D-H param-
eters. Using the calculated map to determine part placement
a maximum energy reduction of 6.5% and deviation error
of 32.7% was achieved. However, it is unclear how well
map generation scales to non-planar and multi-plane print-
ing conditions and non-normal print orientations. Under-
standing the relationship between workpiece pose and man-
ufacturing quality is essential to ensure parts are created with
satisfactory properties.

Process adjustments are required according to the type of
path planning method that is implemented to ensure consis-
tent deposition. Bhatt et al. investigated methods to address
excess material deposition during sharp corners [64]. Tight
tool path turns result in over deposition during WAAM pro-
cesses which can be resolved by reducing extrusion multipli-
ers during turns (i.e., increasing end effector motion while
maintaining consistent deposition speed). To improve pro-
cess planning within WAAM systems, a corner detection al-
gorithm is implemented such that the robot feed rate is in-
creased during sharp corners to reduce the amount of mate-
rial deposited in tight corners (Figure 13). This approach in
addition to mid-layer scanning of the surface ensures con-
sistent layer heights and improvements in mechanical prop-
erties. Chen and Horowitz [149] investigated ML-based op-
timization of toolpath planning for an FFF RAAM system
tasked with fabricating freestanding shapes. Optical images
of the printed specimen captured from a static position are
processed to extract contour features. A deep deterministic
policy gradient algorithm is then trained to maximize the re-
ward defined as the correlation between the printed contour
and the desired contour. State actions are defined as sets of
points through which the toolhead moves to generate the de-
sired shape.
4.1.2. Considerations for C-RAAM

The optimal selection of slicing parameters for C-
RAAM system comprised of homogeneous arm manufac-
turers closely follows approaches for single-arm systems.
The use of heterogeneous arm manufacturers within a C-
RAAM system can result in different optimal parameters for
each arm. Therefore, the optimization of process parame-

ters across multiple arms with differing properties (e.g., re-
peatability, kinematic structure, physical limitations) can be-
come non-trivial compared to C-RAAM systems comprised
of homogeneous arms. Furthermore, additional aspects of
C-RAAM systems must be calibrated to afford accurate de-
position of material within the same global frame.

Frame Calibration: C-RAAM systems operate within
a global frame to work on a common part which requires ac-
curate registration of each arm’s position (Figure 14). The
base frame of each individual robot must be registered within
a base frame through a calibration process [150]. As multi-
arm systems have been used for many years, calibration of
arms within a common workspace has been investigated by
previous authors using a variety of methods [151]. The cal-
ibration process can be formulated as 𝐴𝑋𝐵 = 𝑌 𝐶𝑍 as pro-
posed by Wu et al. [147] where all variables are homoge-
neous transforms, specifically the arm 1 base to hand trans-
form 𝐴, hand to eye (sensor) transform 𝑋, eye to tool (of
arm 2) transform 𝐵, flange (as opposed to hand) of arm 2 to
tool transform 𝑍, arm 2 base to flange transform 𝐶 , and arm
base 1 to arm base 2 transform 𝑌 . By knowing transforms
of variables 𝐴, 𝐵, and 𝐶 from data acquisition, unknown
transforms 𝑋, 𝑌 ,𝑍 can be solved simultaneously [147].

Authors have proposed varying methods to solve the
calibration equation in addition to sensing methods to im-
prove the data acquisition process. Wang et al. proposed
a projection-based arm-to-arm calibration method offering
an improved maximum error of calibration to previous work
using only two calibration points [152]. A laser tracker is
utilized, and various dual-arm configurations (e.g., floor-
wall and wall-ceiling) are evaluated to show generalizability.
The method is specifically for dual-arm configurations and
would need further decomposition for arbitrary orientation
installations which the authors note would require an addi-
tional decomposition step. Various sensing configurations
have been investigated to achieve similar solutions of the
𝐴𝐵𝑋 = 𝑌 𝐶𝑍 equation, including optical and calibration
target [153, 154], optical and ArCo marker target [155], and
binocular vision [156]. While these methods successfully
solve arm-to-arm calibration they require piece-wise solu-
tions to handle more than two arms in a single system. Ad-
ditionally, these methods need an additional calibration step
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Figure 15: Inter-layer process control typically uses a secondary sensing arm such as a) an ultrasonic roller probe for WAAM [34],
b) laser scanners [158].

to register the workspace (e.g., build platform of a RAAM
system) with respect to the global coordinates used by the
robotic arms. To address this, Li et al. [148] utilized struc-
tured light sensors and optical cameras mounted to the end
effectors of a 3 arm wire and arc directed energy deposition
(WADED) platform to collect point cloud data of a reference
part. Eye-hand relationship between the optical camera and
the end effector of the arm was characterized for each arm
using a calibration board [157]. Each arm then scans a cali-
bration block using the structured light scanner; these point
clouds are then processed using the proposed algorithm to
register all point clouds together. From this solution, the
corresponding transformation matrices can then be deter-
mined to give the final calibration solution for the robotic
arms within the system which achieved an orientation accu-
racy of 0.091°. This approach assumes that there is a high
overlap region within the cooperative system which is not
necessarily true in large-scale C-RAAM configurations. It
is unclear how accurate this approach is in large-scale con-
figurations where a minimum amount of overlap is observed,
thereby requiring multiple positions from which calibration
must be conducted.
4.2. Inter-Layer Control

The layer-by-layer nature of AM processes allows for in-
terruption of the manufacturing process for inter-layer in-
spection and process correction. Feedback can then be lever-
aged to inform process parameters of subsequent layers min-
imizing their impact and preventing compounding of defects
(Figure 15). For C-RAAM systems which use cooperative
sensing inter-layer sensing is commonly employed to max-
imize the scannable region of the part layer. Furthermore,
sensors that are too large to mount on the toolhead of fab-
ricating arms can be used in cooperative sensing to offer
deeper insight into the quality of the process and defects that
are present without sacrificing machine capabilities. Previ-
ous literature which employs process control is discussed in
addition to the sensing and analysis methods applicable for

RAAM and C-RAAM systems.
4.2.1. Inter-Layer Control Methods

Ultrasonic testing is a class of sensing techniques widely
used for DED processes where the porosity of fabricated
parts is a pressing challenge. Chabot et al. investigated im-
plementation of phased array ultrasonic testing (PAUT) in a
C-RAAM configuration where a secondary 3 DoF arm scans
specimens from a WAAM system [158]. A machined section
of an aluminum wall and a propeller blade are evaluated,
with example porosity estimates of <0.6mm and <0.6mm
being close to digital radiography testing results of 0.69mm
and 0.88mm, respectively. The authors note that in-situ sens-
ing with an unmachined surface limits the use of this sensing
technique to larger pores than the 0.6mm-1mm size range
captured in the machined specimen.

Laser scanning offers high-resolution characterization of
previously completed layers which can then be used to adjust
toolpath plans of subsequent layers. Magnoni et al. [159]
implemented an Omron laser triangulation sensor onto the
end effector of a 6-DoF FFF IRB-2600 robot arm. After
a layer is completed, a post-layer inspection process takes
place which follows the original path at an offset height. The
measured height is then used to adjust the commanded layer
height of the next layer according to the mean height mea-
surement. The width and height error from the commanded
value was observed to be decreased and correctly controlled
leading to overall improved part quality. The method im-
plemented results in geometric deviation from the original
CAD design, however, as the layer commands are shifted
from their original location with respect to the global origin
resulting in a lower overall height. This drawback was ad-
dressed by Rebaioli et al. [144] to include online re-slicing
of the original CAD model to retain the original geometry.
According to the corrected layer height used in subsequent
layers, the remaining region of the CAD model was resliced
to ensure that the correct overall height was retained. The
drawback of both of these approaches is their coarse method
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of adjusting the layer height by the nature of using the mean
height measurement from the laser scanner. If the layer
height is uneven perhaps due to warping or material concen-
tration in differing regions of the part an uneven correction
of the layer height would be made. In both examples there
are no mention of the variance of the height measurements,
making it unclear how well these approaches apply to more
commonly found geometries beyond single thin-wall prints.

Structured light scanning can afford similar benefits to
line scanners while completing scanning of layers at greatly
improved speeds at the cost of measurement precision. Gar-
mendia et al. [160, 161] implemented an HP SLS3 struc-
tured light 3D scanner capable of measuring with a maxi-
mum precision of 0.05mm in a fixed position above the build
plate of a laser metal deposition RAAM system. The RAAM
system consists of a 6-axis ABB 4400 robotic arm equipped
with a 2.2kW diode for a 0.6mm spot size working area.
Metco 24C martensitic stainless steel powder is deposited
via an IK4-TEKNIKER co-axial nozzle onto a C45E carbon
steel substrate. Scanning of the previously completed layer
is conducted after a set number of layers is completed from
which the error of the measured part height to the expected
part height can be estimated. If the error is negative an ad-
ditional layer is repeated to compensate, while if the error
is positive a layer from the subsequent planned group is re-
moved. The proposed control strategy is implemented across
0.3mm, 0.7mm, and 1.0mm layer heights with height error
being compared with the default no control condition. The
proposed methodology was able to reduce layer height error
to a maximum of 2mm according to the layer height selected,
while the uncontrolled height error displayed compounding
height error typical of the AM method implemented. While
the proposed methodology showed capabilities of reducing
layer height error for L-DED processes, its implementation
is limited by the static mounting of the structured light 3D
scanner which reduces the effective build volume where the
control strategy can be implemented.

Optical imaging has also been implemented to identify
defects within the manufacturing process. Shen et al. [162]
implemented an end effector-mounted CCD camera in a 6-
DoF FFF RAAM process to capture surface defects on the
exterior of fabricated parts. Images captured in-situ were
processed using a dual-kernel method to extract defective re-
gions. The features of the extracted defects are then catego-
rized according to their size and shape into transverse, lon-
gitudinal, and localized defects. The sensing implementa-
tion does limit the maximum part size due to its interference
with the plane of the nozzle, resulting in a negative clearance
angle overall. Therefore the methodology is most suitable
for cooperative sensing applications rather than single-arm
sensing.

Large format sensing devices such as Eddy-Current Test-
ing (ECT) [163] can also be employed on secondary robotic
arms. Zimermann et al. implemented a secondary sens-
ing arm consisting of a Kuka KR-90-3100 equipped with
an FTN-GAMMA-IP65 SI-130-10 force sensor, ultrasound
roller-probe driven by a Peak LTPA controller, and an

ED probe controlled via an Eddyfi EC controller for non-
destructive testing of a WAAM process [34]. WAAM ma-
terial deposition was achieved through a deposition head
consisting of a water-cooled plasma arc welding torch and
local shielding device to prevent oxidation mounted on a
Kuka robotic arm of the same model. Sensing using the sec-
ondary robotic arm was conducted on layers of the WAAM
part designated for interlayer cooling, during which the pri-
mary arm vacated the build area and a LABVIEW control
subroutine was triggered after the temperature of the built
part was cooled to operable temperatures for the sensing de-
vices (<150 degrees Celsius for ETC, <350 degrees Celsius
for ultrasonic). The proposed methodology was evaluated
on a 25mm by 300mm by 25mm straight wall made of Ti-
6Al04 V titanium with artificially generated defects created
using inserted tungsten tubes and a portable grinding ma-
chine to emulate pocket defects. Inspection took less than 1
minute 30 seconds of the 9-minute cooling period for a part
300mm in length with an end effector speed of 0.015m/s for
ECT and ultrasonic testing. Each sensing method was imple-
mented on separate layers with ETC testing being conducted
on layer 5 and ultrasonic testing on layer 6. Collected data
was compared to ground truth x-ray computed tomography
(XCT) after the part was completed. The artificial defects
were successfully detected by the ECT sensing method while
natural porosity defects were not captured. Ultrasonic scan-
ning successfully identified both artificial pocket and natural
porosity defects which ranged from 0.1mm to 0.2mm diam-
eter in size. Notably, while ETC sensing requires lower part
temperatures than ultrasonic scanning, ETC data can be pro-
cessed in real time due to its much smaller per-layer data size
of 16 megabytes to ultrasonic scanning which uses 1 giga-
byte in storage for a single layer. For these reasons, ETC is
more suited for low-resolution rapid inter-layer sensing pro-
cedures while ultrasonic scanning is more suitable for high-
resolution intermediary sensing procedures. Additional de-
tails (e.g., how secondary arm tool changes are conducted)
and case studies on more complex geometries would clar-
ify the feasibility of the proposed methodology in practi-
cal applications of WAAM processes, especially in instances
where slicing surfaces are non-planar.
4.2.2. Considerations for C-RAAM

Inter-layer control strategies are well suited for C-
RAAM systems which are capable of supporting additional
arms to complete inter-layer scanning. The addition of ded-
icated sensing arms does restrict the effective build volume
to the region where built areas can be properly sensed (i.e.
the joint build volume), reducing maximum part capabili-
ties. Therefore it is most beneficial to utilize end-effector
mounted sensing when possible or tool changing mecha-
nisms which do not impose this limitation on the build vol-
ume. As arms can also work on separate regions within the
build volume during the fabrication of a single layer, hy-
brid inter-layer sensing can also be conducted if a region has
been completed and can be safely inspected using an appro-
priate sensor for inter-layer control. This does impose con-
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Figure 16: Mid-layer process control for RAAM using a) head-mounted laser scanners [164] and b) heterogeneous sensing including
thermal imaging, coaxial CCD camera and acoustic scanner [165].

straints on the toolpath planning method to create regions
where collision is prevented between sensing arms and de-
position arms.
4.3. Mid-Layer Control

Real-time process correction can allow for the mitiga-
tion and correction of defects during the manufacturing pro-
cess (Figure 16). To realize such control equally fast sensing
techniques must be employed in addition to analysis tech-
niques that inform closed-loop feedback systems. For AM
processes which create defects in very short time scales (e.g.,
DED methods including WAAM) implementing real-time
process control can realize great gains in mechanical perfor-
mance and defect reduction. Sensors must also have suitable
form factors to be implemented onto the toolhead while min-
imally reducing the capabilities of the RAAM system. Sen-
sors used to facilitate real-time correction during the man-
ufacturing process are discussed at length in addition to the
considerations and drawbacks observed in recent literature.
4.3.1. Mid-Layer Control Methods

Laser scanners offer high-fidelity sensing at the cost
of reduced nozzle clearance for advanced slicing methods.
Mewes et al. integrated dual laser scanners on a 6-DoF
RAAM system to correct nozzle-bed distance by measuring
the height of deposited material and height of substrate in-
situ [164]. Kaji et al. utilized laser scanning in-situ, with a
Micro-Epsilon scanner mounted offset from a laser DED de-
position head on the 6th axis [120]. In-situ scanning of the
material deposited was conducted to allow for defect correc-
tion. Laser scanning is best suited for high-fidelity quan-
titative characterization of defects which can then be used
to infer mechanical properties or correct errors mid-process.
Data analysis methods must be robust due to the high band-
width of data, especially in high-speed fabrication processes

or configurations with multiple scanners.
Real-time infrared imaging offers valuable insight into

thermal dynamics which can be linked to phenomena such
as melt pools. In laser DED processes where a laser is used
to melt and deposit material onto a substrate, the associated
melt pool can be linked to mechanical properties (e.g., ten-
sile strength) and the generation of defects (e.g., porosity,
cracking) according to its size and shape [24]. These fea-
tures can be captured in real time through thermal imaging,
and have seen widespread use in DED processes including
RAAM systems. Gibson et al. implemented a melt pool
monitoring technique for a laser-wire DED RAAM system
using an in-axis thermal camera to reduce the impact of wire
masking which blocks the view of the melt pool [166]. This
work was then used in a control architecture to control the
melt pool size in a DED process [167]. The proposed method
was evaluated across differing controlled variables, specifi-
cally measured melt pool size (real-time), average melt pool
size (layerwise), and both measured and average melt pool
size (layerwise and real-time). Real-time and combined real-
time and layerwise control approaches showed the greatest
improvement in both bead geometry and thin-wall geometry
compared to uncontrolled deposition. This approach is only
evaluated for thin walls, however, and it remains unclear how
the control scheme works in solid parts with greater varia-
tion in thermal gradients and cooling rates.

Optimal imaging is widely used across AM processes
to detect defects ranging from meso to macro scales.
Many commercially available FFF/FDM gantry systems are
equipped with cameras observing build volumes for string-
ing and delamination defects and have been similarly applied
for RAAM systems by Badarinath and Prabhu [21]. The FFF
RAAM system developed integrated a toolhead mounted
camera to live stream build progress for manual monitoring.
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However, no methods are implemented to automatically de-
tect observable defects such as stringing and delamination.
Additionally, there is no indication that the end effector ro-
tates to keep the deposited material in frame meaning not all
orientations of deposition are captured. Conventional image
processing techniques such as canny edge detection [168]
have been widely used to improve feature extraction from
optical images. Lee et al. [122] implemented an end effec-
tor mounted high dynamic range (HDR) camera to capture
abnormal metal transfer resulting in hump or valley-type de-
fects in WAAM processes. Images captured in-situ are fil-
tered using canny edge detection, then input into a convo-
lutional neural network (CNN) architecture to detect valley
or hump defects during the manufacturing process. Opti-
mal performance was achieved by a VGG16 CNN model, a
commonly used CNN architecture [169], reaching an overall
accuracy of 96.5%. The humping/valley defect investigated
in this study is indicative of improper selection of wire feed
speed to torch speed ratio [170], however, meaning there is
little benefit to online defect monitoring with this approach
if proper process parameters are selected.

The use of multiple different sensors in a heterogeneous
manner can offer enhanced sensing capabilities able to cap-
ture a wide range of dynamics across varying fidelities [171].
Early examples utilize sensor feedback directly to controllers
to improve process quality. In one such early investigation,
Heralic et al. [172] implemented coaxial optical imaging to
capture melt pool features and a secondary off-axis camera
and laser diode to measure layer height of deposition. Mea-
sured height is then controlled using a feed-forward compen-
sator, while melt pool width is controlled using a standard
closed-loop discrete time PI controller [173]. More recent
research has sought improved feature extraction and process
characterization through ML techniques rather than direct
feature extraction methods [30, 174]. Chen et al. imple-
mented coaxial CCD camera, SWIR thermal camera [175],
acoustic sensing and inter-layer line scanning [176] for an L-
DED RAAM process [177]. Multi-modal data is then pro-
cessed using a hybrid CNN model to detect keyhole porosity
and crack defects [165]. While posed as an in-situ sensing
technique and showing good results, no discussion related
to inference and data processing time is performed to under-
stand how real-time capable the model employed is.
4.3.2. Considerations for C-RAAM

Mid-layer control methods employ end-effector mounted
sensing which creates challenging scenarios for C-RAAM
systems. In low-overlap C-RAAM systems, the majority
of sensing feedback corresponds to exclusive build regions
where data correlation between arms is generally low. How-
ever, the sensing feedback corresponding to the joint region
is incredibly impactful to the overall quality of the part as
a result of its insight into the formation of the separation
boundary where segments meet [178]. In high-overlap C-
RAAM systems, the majority of sensing feedback corre-
sponds to joint build regions where data collection between
arms is generally high. Therefore, accurate estimation of

part quality must properly capture the association between
the sensing feedback between all arms within the system.
In both system configurations, regions exist where sensing
feedback from separate arms can correspond to common re-
gions in a heterogeneous (varying sensing types) and ho-
mogeneous (multiple same-sensor feedback) manner. Inte-
grated in-situ sensing for mid-layer control requires robust
methodologies and ML models that can properly account for
the spatial-temporal aspects of sensing feedback to make ac-
curate predictions and feedback control.
4.4. Digital Twin

Digital twin (DT) of physical systems were first intro-
duced by NASA [180] and subsequently developed for vari-
ous applications and industries including AM [181]. While
digital twins for AM is still a developing field, the general ap-
proach for digital twins focuses on the use of sensor feedback
to inform ML models which simulate physical phenomena
using both real-time and historical data [182]. Digital mod-
els of the physical system are updated according to sensor
feedback in a closed loop fashion to improve approximations
and predictive capabilities. Digital models of the physical
system are then used to monitor system quality, control pro-
cesses to improve process quality and predict physical phe-
nomena and their impact on the mechanical properties of the
finished component [183]. Digital twin applications to metal
AM processes have been at the forefront of DT development
as a result of its complex microstructures and greater utility
(e.g. improved mechanical properties).

Digital twin systems fall into three subcategories [184],
digital model (DM), digital shadow (DS), and digital twin.
DMs represent a physical system without any real-time sen-
sor feedback (i.e. it can be constructed based on real-world
data). DSs represent the physical system with real-time sen-
sor feedback in a one-way information flow where the digi-
tal system is not utilized to control the physical system. DTs
use real-time sensor feedback to control the physical system,
not just update the digital representation. While many pa-
pers are referred to as DT platforms, the degree to which
the digital model is updated and integrated into control dic-
tates which subcategory it fits within. Furthermore, the res-
olution and the degree to which the DT characterizes the
AM process are useful in distinguishing limitations in ap-
proaches. AM process modeling can be subdivided accord-
ing to the micro, meso, and macro-level physical processes
that are modeled. Micro-level physical modeling estimates
physical processes such as microstructures, residual stress,
and coalescence. Meso-level physical modeling estimates
features including cracks, voids, and geometric deviation.
Macro-level physical modeling captures part-level charac-
teristics such as Young’s modulus, fatigue life, and ultimate
tensile strength. Low-level physical modeling can be used to
estimate higher-level properties at higher accuracy but typ-
ically requires FEA and other thermal modeling techniques
which are extremely computationally expensive. High-level
modeling requires less computation and sensing capabilities
at the cost of lower estimation inaccuracies.
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Figure 17: Digital twin structure for RAAM processes for a) WAAM using a hierarchical digital twin structure [179] and b)
adaptive L-DED AM [177].

4.4.1. Digitial Twin for RAAM
Single-arm RAAM systems have seen various applica-

tions of digital twins to mitigate the impact of defects, es-
pecially for metal AM processes such as DED (Figure 17).
Chen et al. [177] designed a heterogeneous sensing dig-
ital twin framework for in-situ monitoring of a hybrid C-
RAAM system composed of an L-DED and conventional
milling process. The L-DED system is equipped with coax-
ial CCD imaging, acoustic sensing, and thermal imaging for
in-situ monitoring as well as line scanning for inter-layer
sensing. The digital twin framework is developed in ROS
with data sampling limited to 250Hz to ensure synchroniza-
tion across axis position measurements and implemented
sensors. The authors present a digital framework based on
location-specific registration of ML model feedback from
sensing data which can then be used to inform parameter
adjustment and material correction conducted by the sec-
ondary milling robotic arm. However, the framework is only
outlined as the authors display preliminary results of local-
ization of quality estimates from sensing feedback. More
work must be conducted to fully realize the DT framework
proposed to make meaningful use of the quality metrics dis-
played. While there are many examples in the literature of
DTs for conventional ME systems [185, 186, 187], to the
author’s knowledge there are no examples of applications to
ME RAAM systems. This follows the more general trend of
more RAAM investigation in DED systems over ME, with
processes such as WAAM vastly outnumbering ME. Addi-
tionally, DT applications to metal AM processes have been
of greater interest [181].

4.4.2. Considerations for C-RAAM
The use of sensors to link digital simulations of physi-

cal systems within C-RAAM DTs faces similar challenges
to the use of inter-layer control strategies which is how to
unify sensing signals from multiple agents for a global rep-
resentation. Accurate digital representation of the fabri-
cated part requires the fusion of sensor signals from mul-
tiple potentially heterogeneous sources of both exclusive
and joint regions of the part. While heterogeneous sens-
ing and data fusion has been explored across recent years
[188, 189, 171, 134, 190], how to apply these approaches to
DT part representations has yet to be discussed.

5. Challenges and Opportunities
While RAAM systems have seen great advancements in

the last decade, many challenges still persist which limit the
capabilities and application of these systems for both DED
and ME configurations. From this review of recent literature,
the authors note 5 specific gaps that can be expanded upon
in future research: unified slicing software, informed slicing,
intelligent C-RAAM systems, informed part decomposition,
and digital twin software.

• Unified Slicing Software: Many authors have inves-
tigated advanced slicing methods for many years, but
progress remains limited by the inability to replicate
and recreate slicing methods. Conventional slicing
software follows paradigms that were originally de-
veloped for single-extruder 3 DoF platforms which
require further modification to support multi-plane,
non-planar, or multi-extruder printing. These exten-
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sions depend greatly on the robotic arm used due to
the requirement of motion planning solutions and vari-
ation in system configuration (e.g., placement of robot
arms, location of build platform, extruder configura-
tion, DoF). Many authors have sought to develop be-
spoke slicing software that further modifies existing
slicing software or acts as standalone programs suit-
able for their experimental setup and are therefore un-
usable for other systems. The continued advancement
of RAAM systems is dependent on building upon
state-of-the-art slicing methods to realize the full po-
tential to improve AM regarding part quality, maxi-
mum build size, and fabrication speed. While no stan-
dard library or software exists to the author’s knowl-
edge, particularly for RAAM systems, software such
as the 𝑆3 slicer by Zhang et al. [191] have been devel-
oped by researchers as open-source solutions. These
software in addition to conventional gantry software
such as slic3r and reprap [192] can act as building
blocks to expand comparability between slicing meth-
ods to improve AM research and applications of AM
methodologies to other fields. A standard software has
yet to emerge that alleviates current drawbacks and
and greatly accelerates its progress.

• Quality Informed Slicing: Advanced slicing meth-
ods including non-planar and multi-plane have been
investigated in DED and especially ME processes,
but few studies have investigated their impact on the
mechanical properties of the slicing method selected.
While previous research has investigated approaches
to optimize metrics including support material reduc-
tion [51] and tensile strength [48], the impact of ad-
vanced slicing methods on the generation of defects
(e.g., porosity, voids, cracking, delamination, over-
fill/underfill) has not been studied. Challenges of mo-
tion planning associated with RAAM further com-
plicate the generation of defects for complex tool-
paths which can have challenging path planning solu-
tions compared to gantry-style platforms. Investiga-
tion in this area is limited in part to the slicing meth-
ods that are developed for specific experimental se-
tups and their inaccessibility which prevents straight-
forward comparative analysis. If the connection be-
tween slicing parameters of advanced slicing methods
is understood, an informed toolpath that minimizes
these influences can be obtained. As many quality is-
sues still exist within RAAM systems, it is therefore
paramount to address these drawbacks and realize the
full potential of these platforms.

• Intelligent C-RAAM Systems: Many fabrication C-
RAAM systems have been developed to solve large
manufacturing limitations of conventional AM sys-
tems, but have not investigated the mechanical proper-
ties of printed components. Handling the motion plan-
ning of multiple arms requires fabrication while also
preventing collisions which can alter the ideal tool-

path plan and cause varying cooling rates within the
part. These factors are all affected by the selection of
the slicing and motion planning method and their im-
pact can be quantified through the use of previously
developed in-situ monitoring techniques. To ensure
parts are created with desirable mechanical proper-
ties and minimal defect, process monitoring through
sensing should be investigated as conducted in previ-
ous literature. Specifically, sensing integration can be
used to quantitatively assess C-RAAM defects includ-
ing within segment boundaries to inform the toolpath
generation and motion planning process which must
jointly consider the impact of each arm.

• Informed Part Decomposition: C-RAAM fabri-
cation platforms necessarily have segment bound-
aries located within overlapping build regions for
large-scale system configurations. These boundaries
present an additional point of failure in both DED
processes, where thermal distributions result in resid-
ual stresses and warping, and in ME processes, where
discontinuous deposition leads to anisotropic proper-
ties. Therefore, the determination of segment inter-
faces and the selection of segment locations is critical
to maintaining mechanical properties in parts created
with C-RAAM systems. While few authors have pro-
posed alternative interface structures, no investigation
has evaluated the selection of interface shape and lo-
cation on the mechanical properties of finished com-
ponents. If C-RAAM systems are to be proposed as a
replacement to large-scale gantry systems which do
not suffer from segment interface drawbacks, novel
algorithms for interface selection and evaluation of
their impact should be developed. Further investiga-
tion into the selection and impact of the segmenta-
tion process in C-RAAM systems would allow for the
minimization of segment interface impact and greatly
improve the mechanical properties of large-scale AM
components.

• Digital Twin for RAAM Systems: As AM sensing
methods and data analysis techniques have greatly im-
proved in recent years, the impact and potential of
digital twins for AM have similarly grown. RAAM
systems which must coordinate the motion of multi-
ple arms in harmony with each other stand to gain the
greatest benefit of digital twin software among AM
system types. Though digital twin software has been
investigated in RAAM systems, this area of research
stands to gain from standardization and open sourc-
ing of software used to evaluate and implement digi-
tal twins for RAAM systems. Full realization of digi-
tal twin software depends on ML models and sensors
which must fulfill minimum requirements of end-to-
end latency. These key components should be evalu-
ated comparatively to understand the limitations and
gaps of current methodologies. As with slicing soft-
ware, closed-source solutions limit the advancement
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of research within RAAM and prevent the develop-
ment of novel systems. These points are especially
critical in digital twins which span many areas of re-
search and expertise. Further discussion regarding
digital twin’s role in AM and generalized approaches
to implementation would greatly benefit RAAM re-
search and manufacturing development as a whole.

• Motion-Planning Informed Slicing: For manufac-
turing systems (e.g., CNC, FFF, and DED) with triv-
ial inverse kinematic solutions (e.g., gantry) toolpath
planning implicitly solves the motion planning prob-
lem due to only a single solution existing. Therefore,
conventional toolpath planning software (i.e. slicing
software) considers dynamic and geometric limits of
the system to ensure an optimal toolpath is generated.
This is not true for RAAM systems which typically use
g-code generated from slicing software intended for
gantries which are then interpreted to machine com-
mands for robotic controllers. This involves simplifi-
cations such as assuming end effector orientation ac-
cording to the normal of the surface or slowing down
toolpaths to suit robot motion. Motion planning is
then solved separately as an afterthought giving no
bearing to the toolpath that is generated. It is known
that factors such as stiffness of the robot arm [193] and
approach direction of the TCP [145] can affect the re-
peatability and manufacturing quality of the system.
Furthermore, the toolpath remains optimized in re-
gards to jerk of joints and TCP in addition to the max-
imum operating capabilities of the robotic arm. As a
result, toolpaths are unoptimized and slow compared
to conventional gantry systems (in regards to feedrate)
and do not approach the maximum capabilities of the
robotic arms themselves. The conventional slicing
procedure for robotic arms should incorporate the mo-
tion planning step such that the impact of the toolpath
generation considers the impact on motion planning to
realize optimized toolpaths for RAAM systems. This
becomes of further interest for systems with more than
6-DoF which can reconfigure in place while retain-
ing TCP orientation [194]. Optimal toolpaths should
also consider physical limitations of the AM toolhead
and issues of singularities [195]. From these improve-
ments, the full-speed capabilities of robotic arms can
be utilized for large-scale part fabrication.

6. Conclusions
RAAM systems offer incredible benefits over conven-

tional AM systems including improved build volumes and
enhanced capabilities from the cooperative integration of
multiple arms into C-RAAM systems. Similar to AM pro-
cesses, the quality of printed parts and the generation of de-
fects remain the primary challenge of RAAM processes ver-
sus conventional subtractive methods. To mitigate the im-
pact of defects and ensure high-quality AM processes for C-
RAAM systems various avenues of control and system de-

sign must be considered to optimize the desired mechani-
cal properties of finished components. These areas fall into
two categories: system control and process control. Sys-
tem control encompasses the generic control of RAAM sys-
tems, including slicing methods used to generate toolpaths
and motion planning methods for high degrees of freedom
robotic arms. Process control focuses on specific AM pro-
cesses, involving sensor-based feedback during pre-process,
inter-layer, or mid-layer stages. This feedback can be inte-
grated with digital twin software, enabling predictive control
of AM processes.

Many avenues of research exist to bring C-RAAM plat-
forms to the next generation of manufacturing to realize
their full potential, especially concerning large-scale appli-
cations. Challenges regarding the quality and control of mul-
tiple robotic arms still pose a primary challenge and have not
yet been fully investigated. Furthermore, the use of sens-
ing feedback to inform important decisions such as the in-
terface between cooperative arms has not been leveraged to
enable robust printing at large scales. This extends to next-
generation software such as digital twins which require suffi-
cient sensing to model the physical environment to allow for
predictive control, especially in metal-based processes such
as WAAM. This review outlines papers pertinent to these
challenges and outlines the gaps and opportunities that ex-
ist within these areas to further develop research within AM
and advanced manufacturing systems as a whole.
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